GCE Examinations Advanced Subsidiary / Advanced Level

Statistics Module S3

Paper A MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Shaun Armstrong & Chris Huffer © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

S3 Paper A – Marking Guide

1.	<i>(a)</i>	$\hat{\mu} = \overline{V} = \frac{1439}{10} = 143.9$	M1 A1		
	<i>(b)</i>	$\overline{V} \pm 1.96 \frac{\sigma}{\sqrt{n}} = 143.9 \pm 1.96. \frac{\sqrt{130}}{\sqrt{10}}$	M1 A1		
		giving (136.8, 151.0)	A2	(6)	
2.	(a)	a sample taken such that all possible samples of required size have an equal chance of being selected	B2		
	(b)	number members on list 01 to 70 start at random place in table write down each 2-digit number ignoring 00, 71+ and numbers already selected until twelve numbers chosen identify members corresponding to selected numbers	В3		
	(c)	e.g. survey of opinions on changing surgery hours may wish to know views of groups such as working / not working	B2	(7)	
3.	(a)	let <i>F</i> = time on French and <i>E</i> = time on English let <i>A</i> = <i>F</i> + <i>E</i> :: <i>A</i> ~ N(55 + 90, 10 ² + 18 ²) = ~ N(145, 424) P(<i>A</i> > 120) = P(<i>Z</i> > $\frac{120 - 145}{\sqrt{424}}$)	M1 A1 M1		
		= P(Z > 1.21) = 0.8869	M1 A1		
	(b)	P(E > 2F) = P(E - 2F > 0) let B = E - 2F ∴ B ~ N(90 - 2×55, 18 ² + 4×10 ²) = ~ N(⁻ 20, 724) P(B > 0) = P(Z > 0+20/25)	M1 M1 A1 M1		
		= P(Z > 0.74) = 1 - 0.7704 = 0.2296	M1 A1	(11)	
4.	expe	cted freq. males/watched = $\frac{36 \times 40}{80} = 18$			
		males/stranded = $\frac{16\times40}{80} = 8$	M1 A2		
	givin Hoʻi	g expected freqs 18 8 14 18 8 14	A1		
	$H_0: I$ $H_1: c$	difference in preference of males and females	B1		
		$O E (O-E) \frac{(O-E)^2}{E}$			
		21 18 3 0.5			
		13 14 1 0.0/14 15 18 $^{-2}$ 0.5			
		10 8 2 05			
		15 14 1 0.0714			
	. Σ.	$\frac{(O-E)^2}{2} = 2.143$	M1 A2		
	v = 2	$E = -1.1 \times 10^{-1}$	M1 Δ1		
	v = 2 2.143	$3 < 4.605$ \therefore not significant			
	there	is no evidence of a difference in preference of males and females	A1	(11)	

_	-	-	
	N (Л	Т
~	TA.	/1	1

5.	(a
	· · · ·

5.	(a)	temp.1691157211215position215519104611temp. rank26587143pos'n rank17385246 d^2 11404109		
		$\Sigma d^2 = 20$ $r_s = 1 - \frac{6 \times 20}{8 \times 63} = 0.7619$	M2 A2 M1 A1	
	(b)	$H_0: \rho = 0$ $H_1: \rho > 0$ <i>n</i> = 8, 5% level ∴ C.R. is <i>r_s</i> > 0.6429 0.7619 > 0.6429 ∴ significant	B1 M1 A1	
	(c)	e.g. this would not answer her query which relates to how well she does compared to others, all runners may be slower in higher temps	B2	(12)
6.	(a)	let W = weight of component $\therefore W \sim N(46.7, 1.8)$ $\overline{W} \sim N(46.7, \frac{1.8}{12}) = \sim N(46.7, 0.15)$	M1 A1	
	(b)	M1 M1 A1		
	(c)	B1 B1 M2 A2		
		not in C.R. do not reject H_0 no evidence of change in mean weight	A1	(12)
7.	(a)	H ₀ : B(16, 0.1) is a suitable model H ₁ : B(16, 0.1) is not a suitable model P(0) = $(0.9)^{16} = 0.1853$ P(1) = 16(0.1)(0.9)^{15} = 0.3294 P(2) = $\frac{16\times15}{(0.1)^2(0.9)^{14}} = 0.2745$	B1	
		$P(3) = \frac{16x15x14}{3x2} (0.1)^3 (0.9)^{13} = 0.1423$ $P(4) = \frac{16x15x14x13}{16x15x14x13} (0.1)^4 (0.9)^{12} = 0.0514$	M1 A2	
		× 50 to give exp. freqs then freq of ≥ 5 = (50 – sum of others) ∴ exp. freqs are 9.27, 16.47, 13.73, 7.12, 2.57, 0.84 combining groups ≥ 3	M1 A1 M1	
		$\begin{array}{ccccc} O & E & (O-E) & \frac{(O-E)^2}{E} \\ 4 & 9.27 & ^-5.27 & 2.9960 \\ 12 & 16.47 & ^-4.47 & 1.2132 \\ 18 & 13.73 & 4.27 & 1.3280 \\ 16 & 10.53 & 5.47 & 2.8415 \end{array}$		
		$\therefore \Sigma \ \frac{(O-E)^2}{E} = 8.379$	M1 A2	
		$v = 4 - 1 = 3, \chi^2_{\text{crit}}(5\%) = 7.815$ 8.379 > 7.815 :: reject H ₀	M1 A1	
		B(16, 0.1) is not a suitable model	A1	
	(b)	M1 A1 A1	(16)	

Total (75)

Performance Record – S3 Paper A

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	confidence interval	sampling	linear comb. of Normal r.v.	conting. table	Spearman's, hyp. test	dist. of sample mean, hyp. test	goodness of fit, binomial	
Marks	6	7	11	11	12	12	16	75
Student								